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LE’lTER TO THE EDITOR 

On the most probable path for diffusion processes 

F Langouchet, D Roekaertst and E TirapeguiS 
t Onderzoeker IIKW, Belgium 
$ Instituut voor Theoretische Fysica, Katholieke Universiteit, Leuven, Belgium 

Received 8 August 1978 

Abstract. The Lagrangian which determines the most probable path for diffusion processes 
is obtained by a simple and intuitive technique based entirely on the use of path integrals. 

We shall discuss here the problem of the most probable path for diffusion processes. We 
have solved this problem in one dimension (Langouche et al 1978a) in order to be able 
to obtain a steepest descent approximation for the probability density. We shall show 
here that we can extend the method used there to the case of N slow variables q”, 
(U. = 1,2 ,  . . . N, where the diffusion matrix is such that there is no curvature. We use a 
path integral approach which is simple and intuitive, and which avoids unnecessary 
complications. The case with curvature will be treated in a forthcoming paper. The 
Fokker-Planck equation of our system is 

where A”(q)  is the drift and DFV(4) the diffusion matrix, which we use as the 
contravariant metric tensor in the curvilinear coordinates q” (Graham 1977, 
Langouche et a1 1978~) .  The fundamental solution P(Q, 1; Qo, to) of (1) such that 
P(Q, to; Q o ,  to) = s(Q - Q o )  admits the functional integral representations 

where D(4)  = det DFu(4) and y stands for the discretisation involved in the definition of 
the path integral as we have shown in (Langouche et al1978c). We recall that Lv, which 
we call the Lagrangian, depends on the discretisation and that consequently it is not 
uniquely determined. The interpretation of (2) as a sum over all paths such that 
4(ro) = Qo, 4 ( t )  = 0, is well known, and also its difficulties since the paths are non 
differentiable (4 does not exist as a derivative in (2)) and the representation not unique. 
Nevertheless this interpretation strongly suggests the possibility of giving a meaning to 
the most probable trajectory between QO and Q. It should be clear from the beginning 
that it only makes sense to speak of the probability of a small region in q-space around a 
path, and that our work must consist in comparing the probabilities of these regions, and 
this also tells us that we can restrict ourselves to consider regions around differentiable 
paths. In fact we would be especially interested in determining a Lagrangian L,(q“, 4“)  
which we shall call here the Onsager-Machlup function, such that its Euler-Lagrange 
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equations determine, when integrated with the boundary conditions 4( to)  = Q o , 4 ( t )  = 
Q, the most probable path. (The paths should be then twice differentiable.) 

Our method in Langouche er a1 (1978a) consisted in transforming the functional 
integral representation (2) to another one which is independent of the discretisation (in 
probabilistic language this means eliminating the stochastic integrals in the integrand of 
(2)), then a unique Lagrangian L(q“, 4“)  is determined by (2) and it is the solution to our 
problem. 

In N degrees of freedom and when there is no curvature we can treat our problem in 
rectilinear coordinates (i.e. constant diffusion). We recall that the contravariant drift 
vector h ” ( q )  associated with (1) is 

The technique of Bach et a1 (1978) can be generalised in a straightforward way when 
h,(q) is a gradient a, d(4) .  Let us suppose then that we are in orthogonal rectilinear 
coordinates where Dpy(4) = a,,, D(4) = 1, the representation can be taken as the direct 
generalisation of formula (32) in Langouche et a1 (1978~)  and is 

where the discretisation y(a) is either the y1(a) of Leschke and Schmutz (1977) or our 
yz(a) which are equivalent here (Langouche et al 1978b, c). If we are in the case when 
A’(4) = A,(q) = a, d(4)  we can integrate by parts the term 4*A”(q) in the exponential 
of (4), as we have shown in the appendix B of Langouche er a1 (1978b), using the 
formula 

N ‘  

w = l  to ~ = 1  to 
? J r  d74,A,(4(7))=d(4(r) ) -d(4(ro)) - (~-a)  C J d7 awA’(4(7)). ( 5 )  

Doing this we obtain from (4) that 

P(Q, r; Qo, ro)=exp[d(Qo)-d(4(r)l 
d r ) - Q  

dfO)=QO 
9d7) exp[ -lr:d7[f ,=1 5 ( 4 ” ) 2 +  V ( q ) ] ]  

(6) 
where V(q)=iZ,N=1 [A’(q)2-d,A,(4)2-a,A’(q)], and the path integral is now 
independent of the discretisation. This independence can either be proved directly as in 
Langouche et a1 (1978a) or one can remark that the corresponding “Hamiltonian” in 
the operator formalism has no ordering ambiguities (Langouche et a1 1977, Leschke 
and Schmutz 1977). The condition A,, = I3& is realised for instance if the Graham- 
Haken (Graham 1973, Haken 1975) potential conditions are satisfied and if the 
nondissipative part A: of A, vcpishes, in this case 2A, = I3,J when the stationary 
probability is p s ( 4 )  = 2-’ exp(-d), and consequently 6 = 24 (see Enz (1977), formu- 
lae (4.4) and (4.11)). This property has also been used in a different context by Garrido 
er a1 (1978). The most probable path can now be read from (6); it will be the trajectory 
that makes the action in (6) stationary and Lp can be taken, when we add to the 
Lagrangian in (6) the total derivative 4(4(7) )  = Z 4&A”(4(7)), as the Lagrangian in (4) 
for a = f. (The reason for this is of course that the extra term in ( 5 )  vanishes for a = i, 
i.e. when ( 5 )  is a Stratonovic stochastic integral.) We have been working in Cartesian 
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coordinates, but as L, is a scalar (the most probable path cannot depend on the 
coordinate system), we can immediately write down the expression Ep(ij“, 4“) in 
general curvilinear coordinates 4” = @‘“‘q) as 

(7) h w ( 4 )  
(” t,(qq, i j m )  = t ~ , , , ( q ) ( i j w  - hf i (q) ) ( i j”  - h ” ( q ) )  - ; ( ~ ( q ) ) l / z  a,( - ,,,) 

with 

and 

One can check immediately that (7) is a scalar which reduces to the Lagrangian in (4) 
for (Y =; when one is in Cartesian coordinates. Let us remark that for one degree of 
freedom, N = 1, there is no curvature and the drift is always a gradient and 
consequently the problem is completely solved by the previous considerations 
(Langouche et a1 1978a). But now let us justify our claim that the unique Lagrangian 
free of discretisation ambiguities that one obtains is indeed the solution to our problem. 

This is easy to do starting from (6). The probability of the paths in a small region of 
volume characterised by a small parameter 77 around the differentiable curve y = y(t) 
will be (ti = t o + j E ,  t - to = (n + l ) ~ ,  y(t0) = Y O  = q o  fixed): 

where we have put yi  = y(ti) and the integration is in the region rri such that yf  - 77 s 
qf  C yf  + 77. From (6) discretising as in Langouche et a1 (1978a), one obtains 

where &r=zqr-qr-l. We now substitute in (10) after performing the change of 
variable qi = yi + x i .  We have (AY=xY - x Y - l )  

with I’k such that -77 c x f  C 77 and where we have used A’ = E ~ Y - ~  +AY+ O(e2)  since 
the curve y(t) is differentiable. (Note that AY= O(e”’) and that in (12) we have omitted 
terms O(e3”) and higher since they do not contribute to the functional integral (we do 
not write explicitly from now on the limit n + 00 that has to be understood in (12)). We 
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recall that we are only interested in (12) when q + 0 since the quantity of interest is the 
quotient P[y(t), q ] / P [ z ( t ) ,  q)] around two differentiable curves y(t) and z ( t )  when 
q-0 .  This implies that 4(yn+l+xn+1) in (16) can be replaced by 4(y(t)) since 
\xn+ll = O(q). Consider now for any function f F ( t )  the sum Zip,, f”(tj-l) AY. One has 
(putting fw(rjwl) =fr-1 and noting that xo” = 0): 
n+l N N n + l  N 
1 1 f i ” - l ( q - X r - l ) =  f:+lX:+l+ c 1 xf(fY-fY-1). 
j=l w=l w=l j = l  ,=1 

The first term in the right hand side Z, f”(t)x:+l = O(q) where n +a, and the second 
one has the value 

where we have used Zj E = (n + 1)e = t - to. The exponential of ,a sum like (13) will then 
only contribute a term exp(O(q)) and need not be considered this allows us to get rid of 
the term yr-1 Ai” in (12). The last term in (12) is 

and does not contribute either when q + 0. Since A, = aw4 here we have 

4(~(t ) ) -4(~0)  = 

and (12) gives (taking the limit n +a (e +O) and replacing V(y(7)) by its value) 

The second term on the right hand side of (16) is just the Wiener measure Pw(J?k) of the 
paths x ( T ) ,  I x ( T ) ~  c q, in the region rk around the path X ( T )  = 0. P, is independent of 
the curve y ( t )  and consequently this term cancels out in the quotient of the probabilities 
around two differentiable curves thus showing that 

where L,(y“, y“) is the Lagrangian in (4) for a = 4. The most probable path is of course 
the curve y(t) such that R > 1 for any other curve z ( t ) ,  and (17) shows then that L, is the 
Onsager-Machlup function as stated before (in arbitrary curvilinear coordinates L, is 
given by (7)). We note that the end point of the path y ( t )  is free in our derivation, if we 
fix it then the term exp[4(yo) - ~$y(t)] will cancel in the quotient (17) and one can use for 
Lp the Langrangian under the functional integral in (6), this is precisely what we did in 
our steepest descent calculation in Langouche et a1 (1978a). The result (7) has also 
been obtained using probabilistics methods by Stratonovic (1971), and Diirr and Bach 
(1978), for one degree of freedom, and by Ito (1978), in the general case (A, # a&). 
Our result for the steepest descent approximation has also been corroborated recently 
with probabilistic techniques in Bach er al (1978). 
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Let us treat now the general case when A, is not a gradient. The probability 
P[y(t), 771 is given by (10) but we use now instead of (1 1) the exact short time propagator 
up to order e, which is, in rectilinear coordinates (as we are in Euclidean space we go 
again to these coordinates), the direct generalisation of formula (16) in Diirr and Bach 
(1978). One has 

+$E (a,A”(qj-l) -A”(qj-l)A’” (qj-1) -$  Ai” Ay(aFA y(qj-l) 

- A ”  (qj-l)A’(qj-l)) + O ( E ~ / ~ ) ] .  (18) 

Introducing the mid-point discretisation 472:”) = i ( ~ f - 1  + 4 7 )  expression (18) can be 
written as (V(q) is as before): 

We note that (19) could have been obtained directly from (4) in the discretisation -yl($). 
Replacing (19) in (10) and performing as before the change of variable qi = yi +xi one 
obtains (after dropping terms O ( q )  or O(e3l2)):  

P[y(t), v l = e x p  j = l  [ @ = 1  1 (-1€(yi”-l)2-eYi”-lA,(~j-l))-eV(~j-l)] 
n t l  N 

We repeat now the arguments after (12) (formulae (13) to (15)) to eliminate the same 
terms as there. We note that Ai”A”(y~:{’) +x;.L’;)) = A?A”(y,-l+ 
xjt’;)) + O ( E ~ ’ ~ ) - A ~ ( ~ ~ - ~ ,  xi:’?)) since A? = 0(e)ll2 and we obtain then from (20) 
taking the limit n +CO (E  + 0): 

n + l  N (xi” - X i ” - d 2  
j = l  w = l  

- - (x i”  -xj-!-l)f”(rj-l,xj-l )] . (21) 

The term Xi., A,”f”(tj-1, x;:’?) being discretised in the mid-point is a stochastic integral 
in the Stratonovic sense and then the second term in the right hand side of (21) is just the 
expectation value of this stochastic integral in I‘k. Dividing this quantity by Pw(rh), the 
Wiener measure of rk that we have introduced before, we obtain the conditional 
expectation value which has been shown by probabilistic methods to have the limit 1 
when 77 +O by Ito (1978, formula (A.3)). We have then 
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which is again (16) thus showing that the Lagrangian in (9) for a = 1 is the Onsager- 
Machlup function in the general case (in arbitrary curvilinear coordinates (1 1)). 
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